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Abstract

Groundwater is a hugely important resource in both developed and developing
countries and makes up over 90% of the world’s freshwater. The idea behind our
work is to use wave scattering in saturated porous media to quantify aquifer state and
hydraulic properties. We initially focused on solving related inverse problem using
the Specfem software to model coupled elastic/poroelastic waves. Of particular
importance to us is the accurate modelling of the dissipative properties of poroelastic
waves. This lead us to develop high-order discontinuous Galerkin methods. In this
paper, we present results for a two dimensional case.

1 INTRODUCTION

Groundwater is a fundamental natural resource that accounts for more than 90% of
the planet’s freshwater excluding glaciers. Traditional methods of aquifer (geological
formations that contain water) exploration usually reveal very limited information about
groundwater resources and generally do not permit accurate monitoring due to the
immense computational challenges of interrogating large and complex data sets. This
research is about building tools that permit accurate quantification of groundwater
resources by making the maximum use of data, answering basic questions like what is
actually there, how much can be extracted and how fast. For background on groundwater
see [1].

The potential for using passive seismic data to map and characterise aquifers was
considered in [2, 3]. Here, the seismic waves caused by frequent small magnitude
earthquakes propagate through aquifers. In brief, elastic and poroelastic media scatter
waves differently, essentially due to a disparity in wave speeds. Therefore, it is in principle
possible to recover the water table and geometry of the aquifer from seismic data. While
groundwater responses and changes in aquifer formation due to large earthquakes have
been much studied, see for example [4] and the references cited therein, the potential
for using small magnitude earthquakes to characterise aquifer properties appears to be
relatively unexplored, [5].
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In this paper, we consider a two dimensional model problem where seismic wave
propagation is studied in a geometry consisting of a two layered porous aquifer and the
elastic bedrock layer beneath it. In the model, spatial derivatives are approximated using
the discontinuous Galerkin method while the time derivatives are approximated using
the low-storage Runge-Kutta method [6].

2 DISCONTINUOUS GALERKIN METHOD

A promising approach for accurately approximating wave fields, for example, in
poroelastic and elastic medium is the discontinuous Galerkin (DG) method [7, 8, 6, 9, 10].
The DG method is well-suited for large scale wave simulations. For example, the method
can be effectively parallelized using the full power of super computer facilities or
standard multicore computers. On the other hand, the DG method can handle complex
geometries and since it is conservative large discontinuities within the material parameters.
All previously mentioned topics are essential features for the method used in large
scale wave models. Problems considered in this work contain large contrasts within
the material parameters (e.g. wave speed values between soil and rock). Also in all
cases, the computational domain is large (with respect to the wavelength) and therefore
parallel computation is necessary in order to be able to compute results in acceptable
computational time. For the seismic problems, realistic geometric scale for aquifers is
easily tens of kilometers in each spatial direction.

3 NUMERICAL EXPERIMENT

In this numerical experiment, we consider a model that consists of two poroelastic
[11, 12] subdomains and one elastic subdomain. The upper poroelastic layer is air
saturated porous material while the lower one is water saturated. The idea of this model
is to demonstrate how the current method can be applied to estimate aquifer properties,
such as water table level and aquifer basement. Below the aquifer, we assume very low
porosity and hence the material is considered to be purely elastic. In the aquifer, the
water table level is assumed to be at depth 25 m and the basement at depth 50 m. Other
dimensions of the model are assumed to be 2.5 km in length and 1 km in depth. On the
top surface, we use the free boundary condition [13] while all other external boundaries
are modelled as absorbing.

Figure 1 visualises the computational grid used in this experiment. On top left we show
the closeup that is highlighted by white line in the bottom left picture. In our model, non-
uniform basis orders are used. The basis order is selected separately for each triangular
element of the computational grid. The selection formula for the basis order is based on
the theory studied in [14] and which was further developed in [15, 16]. In practise, we
set

p` =
2πah`max

λ`
+ b, (1)

where wavelength λ` = c`min/f , and p` is the order of the basis function in the `th
element. Furthermore, f denotes the dominant frequency of the seismic source, h`max is
the maximum distance between two nodes and c`min the smallest velocity component in
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the `th element of the computational grid. Parameters a and b control the local accuracy
on each element. In this simulation we choose [a, b] = [1.2768, 1.4384] near the seismic
source, otherwise [a, b] = [1.0294, 0.7857]. These parameter choices means in practise
that more accurate solution is demanded near the source, while the accuracy deceases in
other parts of the model. Values for parameters a and b are taken from [15].

Figure 1: Discretization of the computational domain Ω via irregularly refined triangular
mesh. Colorbar shows the order of the basis functions chosen on each element. The
area marked by the white rectangle shown in the bottom left is shown in top left picture.
Right: The number of elements as a function of basis order.

Figure 2 shows the velocity component
√
u2 + v2, where u denotes the horizontal and

v the vertical solid velocity component, for four time instants. On each snapshot, the
title shows the corresponding time instant. In this simulation, the source location is 1
m beneath the ground-air surface. As the seismic source, we use the exploding type
of seismic moment tensor with a Ricker wavelet having 40 Hz dominant frequency f .
Snapshots show the evolution of the wave structure inside the aquifer.

4 CONCLUSIONS

This work is part of the larger entity where the aim is to study what seismic signals
reveal new information about aquifers. Our previous studies [2, 3] led us to develop the
discontinuous Galerkin (DG) method to solve the corresponding forward problem (wave
propagation from the seismic source to receiver). In brief, the DG method is well suited
to study wave propagation in complex geometries and physical models.

In this paper, we considered an example where the seismic source was located close to
the air-ground surface (i.e. active seismic prospecting). With the current DG scheme, the
polynomial basis orders are chosen individually for each element of the computational
grid. The idea of using the non-uniform basis orders is to

a) control the spatial accuracy ⇔ in principle, higher basis orders lead to more
accurate solution
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Figure 2: Velocity component
√
u2 + v2 near the exploding type of seismic source. Title

shows the corresponding time instant.

b) reduce the overall computational demand ⇔ accurate solution is demanded only
in the region of interest, which can be the line between the source and receiver

The next step in our work is to use the same inversion strategy that we used in studies
[2, 3] with the DG scheme discussed in this paper.
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