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ABSTRACT

Equations describing the radiation characteristics of a single rigid disc in a finite circular baffle in free space
are derived using a method originally developed by Streng for a circular membrane based upon the dipole part
of the Kirchhoff-Helmholtz boundary integral formula. In this case, a power series solution is derived for the
radiation integral in order to avoid numerical integration. Using the product theorem, the resulting directivity
function is found to be well suited for calculating the mutual radiation characteristics of two rigid discs in finite
circular baffles in the same plane. The procedure is essentially the same as that used by Pritchard for
calculating the mutual radiation characteristics of two rigid discs in an infinite baffle. Both are based upon
Bouwkamp’s method of integrating the square of directivity function, over the real and imaginary angles, in
order to yield the total radiation impedance.

Finally, using an extension of Babinet’s principle, it is shown how the sound radiation characteristics of a
disc in a closed finite circular baffle can be obtained by combining the radiation field of a disc in an open finite
circular baffle with that of a disc in an infinite baffle. A closed finite circular baffle can also be interpreted as a
flanged infinite tube or a shallow cylindrical box (compared with wavelength) if the stiffness of the enclosed
air is neglected. This method is also used to obtain the mutual radiation characteristics of two such sources.

1. INTRODUCTION

With the wide availability of modern finite or boundary element tools for acoustics simulation, it is perhaps
tempting to neglect more traditional analytical methods. Obviously, finite element modeling is better suited to
analyzing problems with complex geometries. However, if a simple geometric approximation can be made,
accurate results can be obtained analytically with much less processing power than is required for a finite or
boundary element analysis, especially for asymptotic expressions. For example, we may wish to calculate the
characteristics of a source at a high frequency where the number of elements required would be prohibitive.
The same applies to the far field response in the case of finite element modeling, although not in the case of
boundary element modeling. However, if the source is not rigid, the problem becomes one of fluid-structure
coupling, in which case finite elements have to be used. Other advantages to the analytical approach are

¢ By examining the mathematical relationships we can gain a better understanding of the physical
mechanisms than when the calculations are all “hidden” in a computer.

* The equations can be used to derive design data or even lumped parameter approximations, as used by
many acoustics design tools based upon circuit simulators. These enable us to establish quickly a more
or less valid design prior to the FEA/BEA simulation which can then be used to fine-tune the complete
design with fewer iterations. Otherwise, relying on a trial and error approach, in the case of a complex
system, may not lead towards the best solution.

e It is often useful to have a benchmark against which to check the FEM/BEM simulation results. This
can tell us much about the required element size and what sort of meshing geometry to use. Of course,
having two ways of solving a problem gives us increased confidence in both methods.
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Many of the classical analytical results, which provide the starting point for this paper, are best known
through the works of Beranek [1] and Olson [2]. Fifty years ago, it must have been a formidable task
reproducing these results without the benefits of modern computing power. Even today, the task would not be
trivial due to the diversity of techniques employed by the authors of the original papers [3] and [4], from which
these results originated. One aim of this paper is to present a simple unified approach to the problem of axially
symmetric sound sources based upon the Green’s function in cylindrical coordinates and the Kirchhoff-
Helmholtz boundary integral formula [5]. The latter is a general equation that describes the spatial distribution
of the pressure within and on the surface bounding an acoustic medium, which can be written in the general
form

o) = ([ TG oV, + [[Girf) -2 Biry) = Bir,) - Gl M
0 0

where the first term is the volume integral over the bounded medium of the source function f(ry) and the
remaining two terms are the surface integrals of the boundary values of p(r,) and its inward pointed normal
gradient respectively over the boundary surface. G(rr) is a solution of the wave equation that satisfies the
boundary conditions. If there are no boundary conditions, then G(r ) = g(r Ur ) which is the Green’s function
for an unbounded medium.

2. RADIATION CHARACTERISTICSOF A SINGLE RIGID DISC IN AN INFINITE BAFFLE

2.1. Introduction

The rigid disc in an infinite baffle is the model most commonly used for the radiation characteristics of a direct
radiator loudspeaker in a sealed or vented enclosure placed in close proximity to a wall or any other kind of
large flat surface. The original derivation by Lord Rayleigh [6] over one hundred years ago used an ingenious
coordinate system to simplify the problem. However, in order to maintain consistency with our subsequent
derivations, we shall use King’s method [7] as developed by Bouwkamp [8] which uses the Green’s function in
cylindrical coordinates. The disc shown in Figure 1 is mounted in an infinite baffle in the xy plane and
oscillates in the z direction with a harmonically time dependent velocity U, . The area of a surface element is

5, =W, W, 0¢ (2

The monopole source elements and their images that together form the disc source are coincident in the plane
of the baffle. Therefore they combine to form elements of double strength. Hence our disc in an infinite baffle
can be modelled as a “breathing” disc in free space. It can also be thought of as a pulsating sphere squashed
flat. Due to the symmetry of the pressure fields on either side of the line of symmetry, along the line of the
infinite baffle we have the Neumann boundary condition

0 —o<Ww<—a

—_— B _ = 0 3
37 PV, 2)| =g, =0, AW e 5
and on the surface of the disc we have the Neumann boundary condition
ai P(W, 2)| =g, =—ikocl,, -asws-a 4
z

where p is the density of air or any other surrounding medium and c is the speed of sound in that medium.
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Figure 1. Rigid circular disc in an infinite baffle

2.2. Nearfield Pressure

The pressure distribution, in accordance with the Huygens-Fresnel principle, is given by the second term or
monopole part of the K-H boundary integral formula (1)

- 21 ea 0 .
(W, 2w, Z,) = J.o J.o (W, 2w, Zo)a P(W,, Zo)| 2=0+WodW,dgg ®)

where the Green’s function g(w, z[W,, Z) is the solution of the following free space wave equation in the
presence of a monopole point source located at (Wp, Z,) on the surface of the diaphragm

2 190 9* , =0,(W,2) # (W, Z)
e = -O(W-W,,Z~ 6
{awerwderazer ]Q(W’ZM”Z‘)) (=2 Z0){=oo,(w,z>=(wo,zo) ©
where
k:z_ﬂ::g and ¢c= & (7)
A cC o)

A solution to (6) is the free space Green’s function in cylindrical coordinates [5], also known as the Lamb or
Sommerfeld integral, which is given by

i O °° —-iog|z-
QW2 20 .20) = 3 - cos (= ) [ i 4aw) 3127 @®)
m=0

where
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U:{\/kz—,uz, U<k )
i

l’uz_k2’ u>k

and
1, m=0
0.=<" 10
m {2, m#0 (10)

Due to axial symmetry, we shall only use the m= 0 term of the power series in (8). Inserting this together with
(4) in the boundary integral (5) and integrating over the surface of the disc yields

-ioz

~ ~ [ e
p(w.2) = ~kapcl, | 3, (42)J, (1aw) =l (11
where we have used the identity [9]
2
(0ot /@) wychw, = 2 [ 3, (GpnDtc =23, (). wheret =L (12)

on

2.3. Radiation Impedance

We now integrate the surface pressure over the area of the disc in order to obtain the total radiation force

Fr acting upon it

~ 2 ra
Fe==[" [ PO 2)] ey, Wty (13)

After substituting (9) and (11) in (13) and evaluating the integral with z= 0 and again using the identity of (12)
we arrive at

~ SN e JP
Fr =2nka2pcu0[jo %d,u—l L %ﬂa)kzdﬂ} (14)
K = =

The acoustic radiation impedance z, is simply the ratio of the total force F per unit area (or pressure) to the
volume velocity U, where the volume velocity is the product of the disc surface velocity U, and its surface
area S, as follows

L =2kpcljk ua) i S ﬂ] )
SoUp  Splly S |0 pyfk? = i NS
where
S, =na’ (16)
Using formal solutions to the real and imaginary integrals in (15) we finally obtain
2, = (R =X, ) £~ (17)

S,

where Ry is the normalized radiation resistance given by
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_Ji(2ka)

=1 18
Re @ (18)
and Xy is the normalized radiation reactance given by
H,(2ka)
X, == 19
* ka (1%

where J; is the 1% order Bessel function and H is the 1% order Struve function.

24. Far Field Response

In the case of the far field response, it is more convenient to use polar coordinates so that we can obtain the far
field polar responses directly. Rayleigh’s far field approximation [5] is ideal for this purpose

e—ik(r W, sin & cos (¢-@))—7, cos z9)

a(r. 5, gdw,, 4, 2)) = yon (20)

Again we shall use the second term or monopole part of the K-H boundary integral formula (1)
pr.o.p={ [or.9 9 5 dw,d 21
P80 = [ " [ 9.8, A, 4. 20|00 o B(Wo.» @ 2| o0 Wo Wy 0 21)

As the disc is axially symmetric, we can choose any reference angle @in (20). Therefore we can simplify the
problem by letting @=n/2 so that cos(¢g-¢@)=sing . We can now insert (20) and (4) into the K-H integral

(21) and integrate over the surface area of the disc to obtain

e—i kr

2mr

B, 9) = -ikacS, ,

D(@) (22)

where S, = T’ is the area of the disc and D(9) is the directivity function given by

2J,(kasin &)

D)= 23
@) kasin @)
and we have used the identities [9]
2i 02” e"""® dg =J,(t), wheret =kw, sin (24)
T

and (12) with j,,/a=ksin. In order to evaluate the on axis pressure, we simply set = 0 in equation (22).
The result is most commonly written

- . - e—ikr
p(r,0)=-i wﬂ-’oﬁ (25)

where the volume velocity is given by UO =S,U,-
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3. RADIATION CHARACTERISTICSOF A SINGLE RIGID DISC IN AN OPEN FINITE
CIRCULAR BAFFLE IN FREE SPACE

3.1. Introduction

It is not always appropriate to mount a loudspeaker in an enclosure. For example, if the enclosure has to be so
small that it shifts the main resonant frequency up an octave or two, the bass response will be severely limited.
In the case of speakers with large lightweight diaphragms such as electrostatics, even a moderate size box has a
severe impact on the bass response. In such cases, it may be more appropriate to leave the speaker open at the
back. The cost of this, though, is that sound from the back at low frequencies cancels that from the front.
However, in some cases this is less severe than the loss due to an enclosure of less than optimum size. Nimura
and Watanabe [10] calculated the radiation characteristics of a disc in a circular baffle for values of ka up to 2.
However, here we shall adapt the method used by Streng [11] & [12] for an unbaffled circular membrane. The
latter provides a far field expression which is readily suitable for calculating the mutual radiation impedance of
two discs in finite circular baffles or free space using the same method developed by Pritchard [13] for
calculating the mutual radiation impedance of two rigid circular discs in an infinite baffle. The disc shown in
Figure 2 lies in the xy plane and oscillates in the z direction with velocity U, , thus radiating sound from both
sides. It has a radius a and is assumed to be infinitesimally thin. The inner and outer radii of the stationary
baffle are a and b respectively. If b = a, then the problem reduces to that of a rigid disc in free space. The area
of a surface element is given by (2). We would expect the pressure field on one side of the Xy plane to be the
symmetrical “negative” of that on the other, so that

p(w, 2) == p(w,~2)

p(w,0)=0, w>a (26)

Dipole
Elements

Figure 2. Rigid circular disc in an open finite baffle
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Also, at the front and rear outer surfaces of the disc, we have the coupling condition

ai P(W, 2)| - = -ikocl (W), Osws<a (27)
z
and at the front and rear outer surfaces of the baffle, we have the boundary condition
ai P(W, 2)| ;0 =0, aswsb (28)
z

where p is the density of air or any other surrounding medium and c is the speed of sound in that medium. In
order to tackle this problem, we shall use the dipole surface integral part of the K-H equation (1). However, this
differs from the monopole part previously used for the disc in an infinite baffle in that we now need some prior
expression for the frontal surface pressure distribution P, (W,). Also, because the disc can radiate from both

sides, we must include the rear surface pressure distribution P_(W,) too, where P, (W,)=—P_(W,). Streng

[11] & [12] showed that the surface pressure distribution for any flat axially-symmetric unbaffled source (or
sink), based upon Bouwkamp’s solution [14] to the free space wave equation in oblate spheroidal coordinates,
could be written as

P (Wp) = =P (W) :ZZ\{I—%} 2 (29)
m=0

In some literature [5], this pressure is taken as approximately constant across the radius.

3.2. Solution of the Free Space Wave Equation

The pressure distribution, in accordance with the Huygens-Fresnel principle, is given by the dipole part of the
Kirchhoff-Helmholtz boundary integral formula

p(w, 2

meb ~ 0
w,2)==[" [ (B - P (0) 7, -G 40 2) 0 WMy (30)

where the Green’s function g(wlW,) is the solution of the free space wave equation (6) in the presence of a
monopole point source located at (Wp, Z)) on the surface of the disc. However, the pressure produced at each
point (W,2) in space by each dipole element is defined in the integral (30) by the product of the surface
pressure, the inward pointed normal gradient of the Green’s function and the area of each element given by (2).
A solution to (6) is given by the Green’s function of (8). However, we need to evaluate its normal gradient at
the surface as follows

0 - Dm 0 —ioz
ag(w,dwo,z@\zozm =2 eos (=) I (1) Io(1av )7 7t 31)

m=0

Due to axial symmetry, we shall only use the m= 0 term of the power series in (31). Inserting the power series
(29) and (31) in the boundary integral (30) and integrating over the surface of the disc and its baffle yields

w mel o my .
P2 =-bY A2"r(m+)[ (i} 3 ()3, (el (32)
m=1 2

where we have used the identity
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If we now apply the boundary conditions of (27) and (28), we obtain

1
o LS e 3. 1\"2
P p(w, Z)|z=01 :'b; An2 2F(m+5)jo (EJ Jm%(ﬂb)\]o(ﬂ\'\’)od/-f

_{wa%,OSWSa

0, asws<b

Equation (34) can be written more simply as
fydm:{—L05wsa
ot 0, aswsb

where

m+l 3 ~
2 2F(m+ E)An

T

Kbpct,
and
I m(W, k) =1 mR(Wa k) + II ml (Wa k)

where the real part of the integral (37) is given by

1
(k) =02 [ [ﬁj =3 (), (i
2

and the imaginary part is given by

1
|y (W, k) = be {ﬁ} s J_ 3 (Ho) 3 (pawydu
2

3.3. Solution of the Real Integral

In order to solve the real integral (38) we will substitute /= k sin &so that

I (W, K) J, (kwsin 8) cos” sin 8 d8

_ 1 J-n/Z Jimasa (Kb sin 6)
(kb)m—3/2

o Sinm+3/2 H
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Using the same method as Pritchard [13], we can apply a Lommel expansion to the first term of the integral
(40) as follows

/ 2
I3 (Kbsin &) _ Jm+3/2(kb 1= cos 9} Q (kb)%cos*®

2]
sin™’2 g - a — cos? g)m/2+3/4 = Z;, 2qq' Jm+q+3 (kb) (41)
g :
Inserting (41) in (40) yields
q
| o (W,K) (kb)'“‘m z (;E’)' J (Kb j J, (kwsin 8) cos” " @sin 6 d6 (42)
q m+q+

After evaluating the integral over @we arrive at

| (W.K) = J‘Z 2D 3 0

ORI R (k) )

3
a3
where we have used Sonine’s integral [9] as follows

Q22 (q+3/2)

/2 A + .
J-OJo(kWsm 8) cos*™ Gsin HdE = (k)™

J 5 (kw) (44)
q"‘g

a=0

3.4. Solution of the Imaginary Integral

Applying the Lommel expansion in a similar way to the imaginary integral (39) yields exactly the same
expression as (43) except that the Bessel function J,,;,, is now replaced with the Neumann function Yg:32 of
the same order. Unfortunately, the series does not converge for w < a, which rules out its use for calculating the
power series coefficients or self radiation impedance. However, we will use this method for calculating the

mutual radiation impedance of two rigid discs in which case the series does converge if the distance between
the centers of the discs is greater than the sum of their radii. Streng [11] showed that by replacing the Bessel

function Jg;, with Hankel functions H ((1123 ,,tH ((133 ,»» whilst applying contour integration theory and
substituting 1 = ke'? | the imaginary integral (39) could be expressed as

. (W,k):_g{i_ I“” (= )\/ 13, (kwe'®)| J 3(kbe‘9)+iYm+3(kbe“9)}d6?] (45)
2 2

(kb)m—3/2 o

The integral of (45) has finite limits and is therefore easier to calculate numerically than the infinite integral of
(39), However, the integrand is still strongly oscillatory which can lead to significant loss of precision. We can
expand the Bessel and Neumann functions [9] as follows

) Q kw 29 (_quziaq
J, (kwe'?) = [—j -7 = 46
=215 ) @y (46)
kb 2q+m+ ( 1)q i6(2q+m+3/2)
Jm%(kb N= Z( J qir(q+m+5/2) “7
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3
20-m-— i —M—
q 5 (_1)q+me|6(2q m-3/2)

6, _ <o kb
Y S(kbe?)=>| = 48
m%( : 2(2) qr(g-m-1/2) @
After substituting (46), (47) and (48) in (45) we have

2(q+r)+3 2 +

2 ahr!if(r+m+5/2)

3 m Q R
Iy (W, k) =22 "0ed >

2(g+r-m) 2 +r+
q=0r=0 +i(@j aremm (ﬂ) d (=parrm iJ‘”/z /eZiH_leZiH(qH—m—l/Z)de
o

2 b) (@)’r'F(r-m-1/2)
(49)
In order to solve the integrals in (49), we can use the identity
2 (g 2504 | ( 1 ]inﬂ JaT(B+1)
Vel —1ede=—| F|-—, B B+1-1]g¥ - XL T 50
Io 24“ 2y PF 2T (B+3/2) 0

After evaluating the integrals over @we arrive at
3m Q R Kb 2(q+r-m) W 29 Kb 2(q+r)+3 W 2q
I (wk)=22 [Oe F (q,r,m) — —| =ik (g,r,m) — — 51
m (W.K) qZZ( v(@ )[J (b] 2 (@ )[J [bj (51)
where

zFl(_laer —m—l;q+r —m+1;—1je‘“<q”‘””“2> _Vrr(+r-m+1/2)
2 2 2 2T (g+r—-m+1)
2(q+r—-m=1/2)(q)*r!F(r —=-m-1/2)

I:Y (q> ra m) = (_1)q+r+m

(52)

\/Er(q+r +2)
2 (g+r+5/2)
2(q+r+1)(gq)’r!T(r+m+5/2)

s Fl(—l,q +r+1q+r +2;—1)ei“(q””) -

Fy(@.r,m =(-D*" (53)
However, for integer values of g and r, iF;(qg,r,m) is purely imaginary and therefore makes no contribution to
the real part of |y(W,k). Similarly, the @M ™2) torm of Fy (g,r,m) is also purely imaginary and can therefore
be excluded. Thus the final result can be written

Q R _1\0+r+m o 2(q+r—m) 2q
| (w,k)=- H\E/ZZZ 2( 1) rg+r-m-1/2) (@j (i"j (54)
2 oo @) rr(r-m=-1/2)r(q+r-m+1\ 2 b

3.5. Calculation of the Power Series Coefficients

Equation (35) can be solved using the least mean squares or LMS algorithm. Firstly, we shall define an error
function

2

P | M
E(Tn) =YD 1m0 (W, K)+0(w,) (59)

p=1 |m=0

where
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1, Oswpsa

0, asw, <b (56)

w=Ww, :gb,and D(wp)={

In order to find the minimum value of E(7;,) we shall equate its derivative to zero and solve for 7, as follows

d B P M B
mE(Tm)—Eél ,—(Wp,k){;}fmlm(wp,kﬁﬂ(wp) =0 (57)
for j = 1, 2,[MMIM. We now have to solve the following set of M simultaneous equations for 7,
M P aP/b
DT 1 (W T (W k) == 1 (W, k) (58)
m=0 p=1 p=1

3.6. SurfacePressure

Using the expression for 7, in (36), we can write

~ kbpc,
&, = —Lnkopcll (59)

- 3
2 2 F(m+5)

After substituting this in (29), the surface pressure can be written as

N o I, w2 "2
B, (W) = kbpcquml—(l —b—;’J (60)
m=0 2 2 r(m + E)

3.7. Radiation Impedance

In order to find the total force F acting upon the disc, we integrate the pressure from (60) over the whole
surface on both sides as follows

~ — [2m pra_
F = ~2kboct, | [ . (w,)wpchwidg

M 2\™5 (61)
= -2k’ el D i . 1—[1—%}
) *r(m+2)

The acoustic radiation impedance Z, is then given by

= 2 M 2 e

2
Ty =T =-2kbfc(§j > 1—(1—""—) (62)
o St 72 m202"”5r(m+%)

where GO is the total volume velocity produced by the disc which is the product of its surface velocity U, and

its area S, where S, = T2%. Finally, we can write the radiation impedance as
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Figure 3. Normalized radiation impedance of arigid disc in an open circular baffle

z, =2§(RR +iXy) (63)

where Ry is the normalized radiation resistance given by

3
O (bYY Der,) a2
Ry=—ka = | > ——m J1-|1-= (64)
a —0 Mt 5 b
™02 2M(m+ )
2
and Xy is the normalized radiation reactance given by
3
3 M 2\M5
Xy =k 9 ZM 1- 1_a_2 (65)
a — M+ 5 b
m02 r(m+2)

This result is plotted in Figure 3 for various ratios of b to a.

3.8. Far-Field Response

Again, we shall use the K-H integral (30), but first we need to find the surface normal gradient of the far field
Green’s function given in (20)

d ; e_ikr ikw, sin & cos (¢—
Eg(r,ﬁ,ﬂwo,%,zo)h:mmkcosﬁme'kwﬂ B eos (¢-h) (66)
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Again, we let @ = 102 and insert (66) together with the power series (60) into the K-H integral (30) and
integrate over the surface of the disc and baffle to obtain

—ikr M m+—
~ 2L o~ e 1 2 .
p(r,d) =-ik"b’ ocl, cos J . m§=0 rm( . 19] Jm%(kb sin ) (67)

where we have used the identities (12) and (33) with ¢ = K sin . We can now write the complete expression
for the far field pressure in the form

~ . _ e
p(r,?) = —ikocS,l, —— D(F) (68)
2mr
where S, = T’ is the area of the disc and D(9) is the directivity function given by
b\’ M3, (Kbsin )
D(3)=-2kb — | cos &y r,—m32 7 69
@) [aj ng ™ (kbsin )™ (69)

In order to evaluate the on axis pressure, we simply set 7 = 0 in equation (66) before inserting it in (30). This
gives us an integral that is the same as the one for the radiation impedance in equation (61) except that the
pressure is integrated over the whole surface of the disc together with the baffle rather than just the disc itself.
Hence

b)* T

D(0) = —kb[—) > —"r (70)
a =0 M+ 5

2 2(m+->)

2

The normalized on-axis responses for various ratios of b/a are shown in Figure 4 where the normalized SPL is

given by

SPLyorm = 20 log;o D(0) (71)

5 v
— / NN
e NS s
= A /
i iy
— vV
S A
§ 10— o //
5 /
'g 15 u
é
S-ZO /
—  b-=a s //
b=14a V
b=2a ¥
0.1 1 10
b=4a ka
[ —— = 00

Figure 4. Normalized on-axis response of a rigid disc in an open circular baffle
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4. RADIATION CHARACTERISTICSOF A SINGLE RIGID DISC IN A CLOSED FINITE
CIRCULAR BAFFLE IN FREE SPACE

4.1. Introduction

The disc shown in Figure 5 lies in the xy plane and oscillates in the z direction with velocity U,, radiating

sound from the front side only. The sound from its rear is blocked by the cylindrical box, which has a radius b
and a depth h. The disc has a radius a

Rigid Disc in Finite Rigid Disc in Rigid Disc in Shallow
Baffle Infinite Baffle Cylindrical Box
Line of

Finite Baffle Symmetry Cylindrical Box

Disc Disc

++++++++++++\

ST T TS

Dipole

Elements Elements Elements

/| ™
i
Monole ' Monole
|
'

Figure 5. Rigid circular disc in an closed finite baffle (or shallow cylindrical box)
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The model is valid providing h < &/4 and may also be considered as a rigid disc at the end of a flanged infinite
tube, where b is the outer radius of the flange. If b = &, then the problem reduces to that of a rigid disc at the
end of an unflanged infinite tube. The area of a surface element is given by (2).

4.2. Radiation Impedance

From Figure 1, we see that the front surface pressure is the sum of the surface pressures of both a disc in an
infinite baffle and a disc in a finite baffle. However, the resulting pressure is double the strength of each, so we
must divide the result by two. We can apply this argument to the radiation impedance too, which is simply
proportional to the sum of the surface pressures. The real part of the normalized radiation impedance can thus
be obtained by combining (18) and (64) as follows

2 2\™
Ro=p{1- 128 o 0§ _Detra) 1_(1_61_} 72)

2 ka a = 1
i me )

Similarly, the imaginary part can be obtained by combining (19) and (65)

2 mr
‘= Hl(zka)_kb(gj iLTm)S 1_(1_5‘_2J ’ (73)

1
2 ka a) &= ml
=" )

This result is plotted in Figure 6 for various ratios of b to a.

Normalised | mpedanct

0.01

b=a

=
=

b=14a

b=2a
0.001

b=4a o1 1 10

b=o0 ka

Figure 6. Normalized radiation impedance of arigid disc in a closed circular baffle
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4.3. Far Field Response

The far field response takes on the same form as that for an infinite baffle (22) and an open baffle (68)

e—i kr

2mr

B, 9) = -ikpeS, b,

D(@) (74)

where S, = T’ is the area of the disc and D(49) is the directivity function obtained by combining that of an
infinite baffle (23) with an open baffle (69)

. 2 M .
D) = kasin9) > 9. kb(gj cos z.‘}z I, —Jm+3/,2(kb Slg i) (75)
kasin & a (kbsin $)™

m=0

Similarly, the on-axis response may be obtained by combining the on-axis response of an infinite baftle, which
is just unity, with that of an open baffle (70)

2 M
(e )

The normalized on-axis responses for various ratios of b/a are shown in Figure 7 again using (71).

5
on) \
g 0 ‘ // LIS
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a
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=
(@]
'§ -15
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g 20
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Figure 7. Normalized on-axis response of arigid disc in a closed circular baffle
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5. Bouwkamp’sImpedance Theorem

It is perhaps worth giving a brief summary of this important theorem [8]. The real power N radiated from a
circular disc of radius a can be expressed as the product of the square of its volume velocity U, and the
radiation resistance ;.

N =U2r, =(Sp0,)°r, (77)

The real power can also be calculated from the mean square of the far field pressure P(r,&) over a
hemispherical surface at a distance r divided by the far field radiation impedance Zy(r) as r tends to infinity

=2
N_m 2nj j (r,8)sin 9dS dg (78)

where

(79)

r
Zy( 2r

If we insert the far field pressure for a disc in an infinite baffle (22) and (79) in (78) and equate this with (77),
we obtain

a

2
rr—ka j IZD (9)sin 9 dI dg (80)

More generally, we can write

;5
z, = (R +iXy) (81)
SD s, :
where
_(ka)2 e ) .
Re=") jo jOZD () sin 9 d9 dg (82)
and
_(ka)2 2 (T .
Xp ==, jo j;fﬂo D2()sin 9 d9 dg (83)

It is fairly straightforward to verify this result by substituting the directivity function (23) and & = k sin & in
(82) and (83). In this way, the expressions (18) and (19) can be duplicated, bearing in mind that sin(Tv2+i o) =
cos i = cosh o = 0. Of course, this theorem is not limited to radiators with uniform surface velocity.
Bouwkamp’s expression includes the square of average surface velocity divided by the square of the velocity at
some reference point, although we have omitted this here.
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6. MUTUAL RADIATION CHARACTERISTICSOF TWO RIGID DISCSIN OPEN FINITE
CIRCULAR BAFFLESIN FREE SPACE

6.1. Introduction

The two discs shown in Figure 8 both lie in the xy plane and oscillate in the z direction with velocity Uj,, thus
radiating sound from both sides. Each has a radius a and is assumed to be infinitesimally thin. The inner and
outer radii of the stationary baffles are a and b respectively. If b = a, then the problem reduces to that of two
rigid discsin free space.

p(r,4,¢)

Figure 8. Two rigid circular discsin open finite circular baffles

6.2. Directional Response

Using the product theorem, the directivity function D of the over-all radiator comprising the two identical
discs, as shown in Figure 10, is simply the product of the directivity function of a single radiator (69) with the
directivity function of two point elements

m+3/2(kb51n7-9)

Dw@—am[]mer(mmmmm

Dcos(;d sind? sm(pj (84)

By making use of the relation cos @ =+/(1+cos2a)/2 together with (81), (82) and (83) we obtain

_(kb) 2 o7 +ioo ez (Kosing) _ Jj.3,,(Kbsind) - o
Zy = j J. n;”zo m (kb3s/i2nz9)m+3/2 T, (Lbsin:?)“m [1+cos(kd s1nz9s1n§0)]cos Jsind dJ dg

(85)
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where we have used the shorthand
J‘—+|oo r J-f+|oo (86)
+0
Integration over one revolution of @[7] yields
Ly =2+ 24,
M

o M . .
—_ 7H> Jis o (KDsing) _ Jju3,,(Kosind) )
= 2(kb)( Jr ;}Jzorm (Kbsing)™2 T (kbsinz9)j+3/2 [l kd smz9]cos Zsind d?

87

6.3. Sef Impedance

The first term of the integral in (87), which is independent of the spacing d, can be shown to be the self
radiation impedance and gives exactly the same result as the expression for D(0) of (70). It differs from the
radiation impedance calculated in equations (61) through (65) in that the limit of the radial integral is b instead
of a. Hence we shall write the normalized self resistance as

2 M
R, =K [E) Z 1De(rm) (88)
a o Mmt— 5
m=02 2F(m+5)

and the normalized self reactance as

_ i (bY S Om(r,)
X, = kb(ajz 1 (89)

m202m+5r(m+§)

6.4. Real Mutual |mpedance

The second term of the integral in (87), which includes the J, function, is the mutual impedance The real part
can be written

? i J...,(Kosing
_Zk( jzz(kb)mﬂjz m+3/2(kbsmﬂ)D 32 (KDSING) 0(kd sinﬁ)coszﬁsinﬂdﬂ

L sin™3/29 sinl /29
(90)
After applying the Lommel expansion (41) to the first and second terms, we have

2 M M R(kb)q+fmJZ—T n
R, —-Zkb( )zz > L0007 3y fksing)oos 9 sing 09
2

—0is0g=0r =0 m+q+
on
which can be solved using Sonine’s integral (44) so that the real mutual impedance can finally be written as

rr(q+r+3/2)

\/_ M Q R 5 j b qHr+3/2
) =2 z . = J ko)d  5(kb)J  ;(kd) (92
( jzzzz qlr!(ko)™ (dj m+q+g( ) j+r+§( ) q+r+%( ) 02)

m=0 j=0 g=0 r=0
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6.5. Imaginary Mutual | mpedance

The imaginary part of the second term of (87) can be written

T i ; J. kbsin$
_ E ‘z: jz m*%/2(k55‘1n19) O J”?( sind) E[IO(kd sin&)coszﬁ sin? dJ
(kb)m+J mr3/2g sin! 29

=070 sin

93)

If we now substitute 7= it + TV2 we obtain an integral with real limits

J kb cosh t
X, —2kb( j Zz(kb)mﬂ,[ Jims3/2(Kbcosht) B j+32( beos )EUO(kd cosht)sinh>t cosh t dit

prar e cosh™?"%t cosh! 3%t
(94)
We can apply a Lommel expansion to the first two terms of the integral (94) as follows
Jrss| KA1 +sinh? t) 0 -
Jisya (Kbcosh t m+3/2( -1)%(kb)¥sinh " t
3/2( ) — = ( ) ( ) J 3 (kb) (95)

cosh™2t  (1-sinh?t)™2"4 ey 29q! Mg

Inserting (95) in (94) yields

(=D 7,7
- Jm+q+3/2(kb)‘]j+r+3/2(kb)

szMQR a+r 41y g+r-m-j
X12:2kb(gj PPN (96)

m=0j=04=0r=0 xj: Jo(kd cosh t)sinh2@*" Dt cosh t dit

In order to remove the hyperbolic functions, we shall let u = sinh t so that

(=D)"" 7,7
j J +q+ Kb J'+r+ kb
X12=2kb(9j2iiii 29 g (k)™ IaTr 3/2(KD)Jjr43, (KD) o
a m=0j=0q=0r=0 © \/2— 2q+r+)
on Jo(kd u +1ju du

For the Bessel function Jy, we can use the identity [9]

J (Z) - I_ e—lv& |zgm:9d0 (98)

By substituting S = z€92 in (98) and integrating along a contour which starts from —co on the real axis,
encircles the origin once in the positive sense and returns to —co, we obtain

1 ()¢ = z
J()=—| = | ¢V s——|ds 99
() 2ni(2]§ exl{ 45] ©9)

Applying this to (97) with z=kdyu? +1 and v= 0 yields
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COT rnd (O kb)J kb
b 2M M Q R 2q+rq!r! m+q+3/2( ) j+r+3/2( )
X, = 2kb(—j ZZZZ . —[ﬁ]zﬁ (100)
s asr=o X§lexp|:8—(ﬁj l}re 2/ s @D duds
S 2 S |0
After solving the infinite integral we have
(D% 7,7, (Ko)d* ]
T P ar Jrnegrs2 (K0)J 43,2 (KD)
X :2kb[—] (101)
? n;),z(;qz;; 1 kd\' 1 |F(q+r+3/2)s 32
x§—exp s—| —| — e
s 2 ) s| 2(kd/2)*
where we have used the following identity [9] with 8= (kd/2)*/s as follows
Iom uMVe P gy = -rénﬁ:—iff ) (102)
Again, using the identity (99) for the contour integral with z=kd and v=—(q+r+3/2), we obtain
DT,z T(g+r +3/2)(Ko)* ™)
( jZZZZ( 30 2003 (k)
m=0 j=0 =0 r=0 24 rq!”(|<0|/2)q ' mea+ 2 ~(a+r+)
(103)
Finally, using the identity [9]
(—1)”J_<n+3/2)(kd) =Yyu3/2(kd) (104)

we obtain

x.=23(2] £33 50

m=0 j=0 q=0 r=0

F(@+r+3/2)
q'r'(kb)m+j+1/2

q+r+3/2
(—) J s (kb)d (kb)Y ,(kd) (105)
d m+q+5 ]+r+E q+r+E

The results of equations (92) and (105) for the mutual radiation resistance and reactance respectively are
plotted in Figures 9 and 10 for various ratios of b/a. For b = co, which represents the infinite baffle case, we

have used Pritchard’s equations as follows

rQ+r+1
R, = kdz_(;; arl [ j q+l(ka)J,ﬂ(ka)JW%(kol)
2ZQ:ZR:r(q”+D ka)d, . (ka)Y | (kd
X =g 2 g @) AL
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Figure 9. Mutual Radiation Resistance of a Two Rigid Discs in Open Finite Circular Bafflesat ka =1
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Figure 10. Mutual Radiation Reactance of a Two Rigid Discs in Open Finite Circular Bafflesat ka =1
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7. MUTUAL RADIATION CHARACTERISTICSOF TWO RIGID DISCSIN CLOSED FINITE
CIRCULAR BAFFLESIN FREE SPACE

In order to plot the mutual radiation resistance shown in Figure 11, we simply add equations (94) and (107) and
divide the result by 2. Similarly, the mutual radiation reactance shown in Figure 12 is obtained by adding
equations (106) and (108) and dividing the result by 2.
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Figure 11. Mutual Radiation Resistance of Two Rigid Discsin Closed Finite Circular Bafflesat ka =1
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Figure 12. Mutual Radiation Reactance of Two Rigid Discsin Closed Finite Circular Bafflesat ka= 1
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8. CONCLUSIONS

A method for calculating the radiation characteristics of two rigid discs in open or closed finite circular baffles
has been described. Furthermore, a simple unified method has been presented for reproducing the results given
by Beranek [1] for the radiation characteristics of a single disc which gives good agreement with the originals.
Referring to Figure 4, it can be seen that in the case of a rigid disc with no baffle, the on-axis sound output falls
at 6dB/octave for small values of ka due to the decreasing path difference (as a proportion of wavelength A)
between the anti-phase rear radiation and the front radiation which it cancels. At larger values of ka, the rear
radiation moves in and out of phase with that from the front, but the summation and cancellation effects are
fairly small, the largest peak being 3 dB at ka = TWV2 or A = 2v2 a. The reason for this is that rear radiation
comprises many point sources spread all across the radius of the disc, each with a different path length to the
front, so that at no particular frequency do they produce a combined source that is either directly in phase or
out of phase with the output from the front. However, if we include a circular baffle and increase its size, the
actual radiating area decreases in proportion to the total so that it behaves more like a coherent point source.
Hence, in the case of b = 4a, we see a deep null at ka =172 or A = 4a, which is the distance from the centre to
the edge. Of course, a disc at the centre of a circular baffle is the “worst case” and it would be interesting to
compare these results with those of an offset disc in a circular, rectangular or elliptical baffle, for example, in
order to “smear” the path difference effect.

One would expect that if the size of the baffle were increased still further, the response would converge
towards that of an infinite baffle, which is a ruler flat line. However, the response becomes ever harder to
calculate as we increase the ratio of b/a and the limit of the power series M has to be increased at higher
frequencies to reflect the more impulse-like surface pressure distribution. Of course, a larger baffle requires
more calculation points P too. This means that we need to extend the precision in order to avoid numerical
problems associated with a badly conditioned matrix, especially at low frequencies where R is much smaller
than Xg. In this paper, P = 30 was used for b = a and P = 120 for b = 4a. M was varied from 4 at low
frequencies without a baffle up to 10 at higher frequencies with b = 4a. As for the other function series limits,
Q = R=20 was found to be sufficient for all instances.

According to the product theorem (84), the response in the Xz plane (¢= 0) is exactly the same as that for a
single disc except for a factor of two. This result is perhaps slightly surprising considering that we have a case
of mutual scattering in addition to mutual impedance. In the case of an infinite baffle there is simply mutual
impedance because when one radiator is “switched off”, the other just “sees” an undisturbed infinite plane.
However, this result can be verified using FEM/BEM analysis and holds even if the baffles (or unbaffled discs)
are just about touching.

As Pritchard pointed out in the case of two discs in an infinite baffle, the fact the power series for the
mutual reactance does not converge for d < 2b is merely academic because beyond this point the discs (or finite
baffles) are partially coalesced. It is interesting to note that in the case of close proximity, the mutual reactance
is higher for two unbaffled discs than for two discs in an infinite baffle. However, beyond this point, the mutual
reactance of the unbaffled discs decays far more rapidly. This is possibly due to the fact that the discs are
located within the “nulls” of each other’s dipole directional responses. The same trend can be seen for the
mutual resistance except that the region for which the unbaffled impedance is higher is extended slightly. The
curves for b=aand b = 1.4a are almost coincident across the range.

As one would expect from Babinet’s principle, all of the results for discs in closed finite baffles lie
somewhere between those for the corresponding discs in open finite baffles and those for discs in an infinite
baffle.

As one final observation, Morse and Ingard [5] present a partial derivation for a disc in free space based
upon the assumption of constant pressure across the surface, as in the Kirchhoff theory of diffraction. If the
expression for the velocity is integrated over the surface to give the volume velocity and divided by the total
driving force per unit area, this yields an integral for the normalized real radiation admittance (or conductance),
the solution to which is
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G, =1 +é\]l(2ka) -2J,(2ka) - {3, (2kayH , (2ka) - J, (2ka)H , (2ka) (108)

This is quite a good approximation to the rigorous solution using Streng’s method except that the ripples
are missing. Unfortunately, the integral for the imaginary radiation admittance (or susceptance) Br has a non
converging integrand and therefore cannot be solved. However, a reasonable approximation can be made by
taking the imaginary radiation admittance of a disc in an infinite baffle and doubling it.
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