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1 – Acoustic fields

• The aim is to simulate high frequency pressure fields in complex geometries

(also in inhomogeneous media)

• Wide range of applications (ultrasonics, audio acoustics: e.g. HRTF)

• Linear acoustic model in frequency domain P (r, t) = p(r) exp(−iωt)
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where p = acoustic pressure, ρ = density, c = speed of sound, ω = 2πf

angular frequency and κ = ω/c = wave number
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2 – Numerical methods for high frequency problems

1. Ray-approximations:

• Fast in simple geometries

• Insufficient for complex media

2. Finite difference methods (FD, FDTD)

• Widely used for time-domain problems

3. Boundary element methods (BEM)

• Difficult for inhomogeneous media

4. Finite element methods (FEM)

• Flexible for general geometries

Methods 2.-4. require a dense spatial discretization.
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3 – Drawback of standard FEM

• The basis functions are typically low-order polynomials.

• A rule of thumb: 10 elements / wavelength

• Numerical pollution:

An error estimate for a low-order FEM:

|p− ph|1
|p|1

< C1κh+ C2κ
3h2,

where | · |1 is H1(Ω)-seminorm, h = elements size, C1 and C2 are

constants.
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4 – Methods that use “wave-like” basis functions

• Infinite elements (Bettess and Zienkiewicz 1977)

• Partition of unity finite element method = PUM (Babuška and Melenk 1997)

• Least squares method (Monk and Wang 1999)

• Discontinuous enrichment method (Farhat et al. 2001)

• Discontinuous Galerkin method (Farhat et al. 2003)

• Plane wave basis in integral equations (Perrey-Debain et al. 2002)

• Ultra weak variational formulation (Després 1994, Cessenat and Després

1998)
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5 – Ultra weak variational formulation (UWVF)

• Uses standard finite element meshes

• A new variational formulation on element boundaries

• In stead of solving the pressure field directly, we solve a new function on

element interfaces

χ =
(
− 1

ρ

∂p

∂n
− iςp

)

• Solution in each element is approximated using plane wave basis functions

⇒ allows larger elements than FEM⇒ Reduced computational burden

• Simulation are still demanding : We use a parallel code on a PC cluster

consisting of 24 Pentium 4 with 48 GB total RAM.
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6 – Just to show the UWVF
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for all piecewise smooth functions vk satisfying the adjoint Helmholtz equation

∇ · (Ak∇vk) + κ2
kη

2vk = 0 in Kk. Where

Kk = a finite element

Σk,j = an interface between elements Kk and Kj

Γk = an element face on the external boundary.
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7 – Discrete UWVF

• The basis functions are complex conjugated plane waves:

ϕk,` =





exp(iκkdk,` · r) in Kk

0 elsewhere,

• The discrete problems is written as the sparse matrix equation

(I −D−1C)X = D−1b,

where D and C are sparse block matrices and X includes weights for basis

functions for each element. The matrix equation is solved using the stabilized

bi-conjugate gradient.
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8 – Our contribution to UWVF

• Stabilization of the method by using element-wise varying number of basis

functions.

• Extension of the UWVF method for elastic wave problems (currently in 2D).

• Improved truncation of unbounded problems ( = Perfectly matched layer

(PML))

• Verification of the UWVF-Helmholtz model for ultrasound problems
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9 – A test problem: Scattering from a sphere with φ = 20 cm
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Figure 1: Left: The mesh. Right: Solution for a plane wave propagating from left

to right at 20 kHz.
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10 – Accuracy of the UWVF approximation
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Figure 2: The relative error of the UWVF approximation in near- and far- field. All

results are computed in the same mesh by varying the number of basis functions.
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11 – Field surrounding a human figure
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12 – Time as a function of frequency
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Figure 3: All frequencies are computed in the same mesh by varying the number

of basis functions and by using 24 processors.
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13 – Time spent for different sub-procedures

Assembling matrix C
Bi−CGStab iteration

Post−processing

Misc.

Total time t = 8596 s

Choosing the basis and
assembling matrix D 

Computing far−field
(on single processor) 
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14 – Conclusions

• The UWVF is a promising alternative for the standard FEM.

• A possible advantage over BEM: The UWVF is well suited for problems in

inhomogeneous media.

• A faster method for choosing the right number of basis functions is needed.

• Extension of the method for coupled fluid-solid problems.
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