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ABSTRACT 

The principle of formulating the JMC method to produce secondary sources that function as active scatterers on 
a hypothetical scattering surface is established, to be applied, e.g., in concert halls. The examination is based on 
the modified JMC method, to ensure that the logic does not lead to the need of changing the primary sources. 
The actively reflecting plane serves as an example of the JMC formulation for the active scatterer. The solution 
for the actively reflecting plane works on the local control principle: each reflecting subarea needs information 
of the primary field only at that subarea. The solution can also apply to piecemeal planar surfaces and to smooth 
convex surfaces, approximately. 

1. INTRODUCTION 

The JMC method is suitable for formulating the problem of active noise control with the general system theory. 
More generally, the method applies to the reshaping of acoustic or any other fields [1], [2], [3], to wave 
reconstruction [3], and to wave propagation problems [4], [5]. Its name originates from the first three pioneers 
of the method: Jessel, Mangiante, and Canévet [2] (the JMC group). Uosukainen presented the modified JMC 
method [6]. The modified JMC method differs from the original one so that in the former the primary sources 
are not changed in any case. 

The purpose of this paper is to establish, at a general level and especially applied to acoustic fields, the 
principle of formulating the JMC method to produce secondary sources that function as active scatterers on a 
hypothetical scattering surface. As an example, an actively reflecting plane is introduced. The examination is 
based on the modified JMC method, to ensure that the logic does not lead to the need of changing the primary 
sources. A more detailed presentation has been given by Uosukainen [7].  

2. MODIFIED JMC METHOD 

In the original situation there is a deterministic field (of any type) in which linear operator L (typically a 
differential operator) connects sources S and field F via 

 LF S=  . (1) 

Instead of field F, field F′ is desired, which can be obtained from the original field using operator M as 

 MF F= ′  . (2) 

In the original JMC method, operator M also weights the original sources to sources S′. In the modified JMC 
method, the original sources always remain unchanged. Both in the original and modified JMC method, there is 
a need for additional sources S′′ such that field equation (1) for the modified field is valid. The field equation of 
desired field F′ with the original sources unchanged is 
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 L ′ = + ′′F S S  . (3) 

The expression above, together with equations (1) and (2), yield for the secondary sources in the modified JMC 
method 

 FFFSFS MLLML ′=−=−′=′′  , (4) 

where 

 ′ = −M L M I( )  , (5) 

where I is the identity operator. 

3. JMC FORMULATION  OF THE ACTIVE SCATTERER 

3.1. General formulation 

A hypothetical scattering obstacle with its boundary surface A is defined according to Figure 1. 
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Figure 1. A hypothetical scattering obstacle. 

The modified field is assumed to be the sum of original field F and some extra field Fs (scattered field) 
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where r is a spatial coordinate vector, and Ms and Mr are operators. It is supposed that operator Mr maps 
vector r on the other side of surface A, i.e., 
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see Figure 1. It is further supposed that extra field Fs vanishes inside A and obeys the homogeneous field 
equation outside A, 
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The latter formula, together with equations (1) and (3), implicates that the only possible place for the secondary 
sources are on surface A. 
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The fact that the modified field generally obeys equation (2) yields 

 sMIM ′+=  , (9) 

where operator Ms′ operates so that 

 )()( rFrF rss MMM =′  . (10) 

The secondary sources, according to the modified JMC method, are now as stated in equation (4), where, 
according to equations (5) and (9), 

 sMLIMLM ′=−=′ )(  , (11) 

so 

 )()()( rFrFrS rss MLMML =′=′′  . (12) 

According to equations (6) and (8), operator Ms has to be of the form 

 )( 1010 xxss −ε= MM  , (13) 

where Ms0 is a continuous function of spatial coordinates, ε(x1 – x10) is a step function, and where it is 
supposed that boundary A is formed of a constant x1 surface x1 = x10, see Figure 1. The secondary sources on 
A are due to the discontinuity of Ms at x1 = x10. Equation (8) can be written outside A, utilizing equations (6) and 
(8), as 

 Arsrss  outside  0)()()( 0 === rFrFrF MLMMLML  . (14) 

Due to the continuity of Ms0, this must hold also at A. Because Fs vanishes inside A, according to equation (8), 
the equation above is valid everywhere, i.e., 

 0)(0 =rF rs MLM  . (15) 

Now the secondary sources are, according to equations (12), (13), and (15), 

 ( ) ( ) ( )
( ) .  at   )()(

)()()()()()()(

0101

010110101010

Axx
xxxxxx

s

rsrsrs

rF
rFrFrFrS

ML
MMLMMLMML

−ε=
−ε+−ε=−ε=′′

 (16) 

The final general solution above depends on the original field at A, operator Ms0, and the field operator operating 
on the step function at A. 

3.2. Application to acoustic fields  

In acoustic fields in flowless and homogenous ideal fluids field F, sources S, and operator L connecting them 
are 
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where t is time, Q0 and ρ0 are the compressibility and the density of the unperturbed fluid, p and u are the sound 
pressure and the particle velocity of the acoustic field, and q and f are the monopole and dipole distributions per 
unit volume. 

Operator L operating on the step function yields now 
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where δ(x1 – x10) is the Dirac delta function and en is a unit outward normal vector on surface A, see Figure 1. 
The secondary sources are now, according to equations (16), (17), and (18), 
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where operator Ms0 has been divided into two operators, Msp operating on the sound pressure, and Msu 
operating on the particle velocity 
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and where I is identic dyadic (I ⋅ a = a ⋅ I = a). Integrating expression (19) with respect to x1 yields surface 
secondary source distribution Ss′′ on A as 
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The solution above for the acoustic fields depends on the original sound pressure and the normal component of 
the original particle velocity at A, and operator Ms0. 

3.3. Reflecting plane  

Dyadic K producing the reflection transformation of the original field with respect to the plane x = 0 can be 
presented as [8] 

 zzyyxxxx eeeeeeee ++−=−= 2IK  , (22) 

where e x is a unit vector in x-direction (normal to the reflecting plane), see Figure 2. The dyadic of the 
reflection transformation inverts the normal component (with respect to the reflecting plane) of the vector as 
opposite without changing the other components in any way. The reflection transformation operates on both the 
actual field vectors and coordinate vector r, see Figure 2. The transformed field may be interpreted to be 
caused by a mirror image of the original source with respect to the surface. The strength of the mirror image 
and its distance from the reflecting surface are equal to those of the original source. 
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Figure 2. The effect of the reflection transformation to field vector F and co-ordinate vector r. 

If the reflecting surface is not ideal, the amplitude of the reflected field is smaller than that of the original field 
on the reflecting surface. The reflection may also change the phase of the field. This can be taken into account 
with complex reflection coeffic ient R. The reflection coefficient must be properly chosen to ensure that the 
reflected field satisfies the homogeneous field equation in the half space x > 0. One possibility is to use a 
reflection coefficient independent of the angle of incidence. With a reflection coefficient chosen as stated 
above, the reflected acoustic fields (subscript r) obey 
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According to the presentation of the spatial variable in the reflection transformation, the propagation 
direction with respect to the normal of the plate is changed into the opposite, remaining original in lateral 
directions.  

Operators Ms and Mr, defined in equations (6), (7), (13), and (20), are now 
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The secondary source densities, according to equations (21), (22), and (24), are now 
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The solution above works on the local control principle: the secondary source strengths at any point on A depend 
on the original fields only at the same point. 

The planar secondary source expressions in the equation above approximately applies to piecemeal planar 
surfaces and even to smooth convex surfaces. In those cases the unit vector in x-direction has to be replaced 
with a unit vector normal to the surface. 
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4. CONCLUSIONS 

The principle of formulating the JMC method to produce secondary sources that function as active scatterers on 
a hypothetical scattering surface was established. The principle can be applied, e.g., in the active control of the 
acoustical properties of concert halls. The examination was based on the modified JMC method, to ensure that 
the logic does not lead to the need of changing the primary sources. As an example of the scatterer, an actively 
reflecting plane was introduced. The solution works on the local control principle: each reflecting subarea needs 
information of the primary field only at that subarea. The solution can also apply to piecemeal planar surfaces 
and to smooth convex surfaces. 

5. REFERENCES 

[1] Jessel, M. J. M., and Angevine, O. L. "Active acoustic attenuation of a complex noise source," Inter-Noise 
80, Proceedings, Miami, Florida, 689–694, 1980. 

[2] Jessel, M. J. M. "Active noise reduction as an experimental application of the general system theory," Inter-
Noise 83, Proceedings, Edinburgh, 411–414, 1983. 

[3] Illényi, A., and Jessel, M. "Decoding/recoding the source information from/into sound fields: another way of 
understanding active noise control," Inter-Noise 88, Proceedings, Avignon, 963–966, 1988. 

[4] Canévet, G. "Acoustic Propagation in Aperiodic Transition Layers and Waveguides," J. Acoust. Soc. Am. 
67: 425–433, 1980. 

[5] Mangiante, G., and Charles, S. "Absorbing boundary conditions for acoustic waves and Huygens’ principle," 
16th International Congress on Acoustics, Proceedings, Washington, 1925–1926, 1998. 

[6] Uosukainen, S. "Modified JMC Method in Active Control of Sound," Acustica United with Acta Acustica 
83: 105–112, 1997. 

[7] Uosukainen, S. "Active Sound Scatterers Based on the JMC Method," J. Sound Vib. 267: 979–1005, 2003. 
[8] Lindell, I., Methods for Electromagnetic Field Analysis, Clarendon Press, Oxford, 1992. 


