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ABSTRACT

We calculate the pressure in a box with different complex impedances on its walls. The frequency response of
a point source is calculated using both Boundary Element Method and analytical calculations combined with
Newton iteration to cal culate the modes.

1. INTRODUCTION

The sound field in arectangular box is often used as a simple example system that can be solved analyticaly in
various ways - for example, summing mirror images or by summing the eigenmodes. When the walls have
complex impedance, the mirror sources have to be modified accordingly. However, the mirror source cannot
take into account the edge diffraction of the box resulting from different impedance on different walls [1]. We
have numerically solved the complex eigenfrequency equation that allows us to solve for the pressure in the
box. We verify the analytic solution with BEM.

2. THEORY

The pressure field W inside a cavity is the solution for Helmholtz equation [2]

(02 +k2)w=nh 1)

with boundary conditions

6_q_J =—jk E , (2)
on ¢

where k is wave number; W is the pressure field, the harmonic time dependence of which is separated; h is

solutions of the homogenous Helmholtz equation with the proper boundary conditions and corresponding
values of the wave number k, ..

0%, (M) + Ky o Wy (1) =0. 3)

Let ¢/(r) be the solution for a point source

O%(r 1) + K2(r,ro) =QA(r — 1) 4)

and expressit as a series of al eigenfunctions

l//(r1r0): Z ..... m(ro)wn m(r) (5)

.....
n,..,m

Joint Baltic-Nordic Acoustics Meeting 2004, 8-10 June 2004, Mariehamn, Aland BNAM2004-1



Inserting thisto the equation (4) for point source leadsto aform
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This applies generaly to all shapes of cavities and rooms. Next we will study the eigenfunctions and
eigenvalues for the special case of arectangular room

3. BOX

The system under consideration is a box with locally reacting walls and a point source in it. The complex value
of the specific impedance for the absorbing material may be different on each wall. The volume of the box is
chosen to be the same as of a car. However the area of it is smaller, since it lacks the details of the car interior
that increase the area. The interior domain of the box is bounded by the walls:

0<x<lI,

O<yc<l,, (20

O<z<I,

where |, I, and |, are sidelengths of the box. Inside the box we have a point source.

The system is solved in cartesian coordinates so that the pressure field is defined as a linear superposition of
the products of the solutions of the homogenous Helmholtz equation in three dimensions. The boundary
condition determines the eigenval ue equation, which corresponds to the modes.
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Figure 1. Box definition.

3.1. The eigenvalue equation

The box has admittances B,q , By-1  » By=0+--» Bo=, The solution of the general Helmholtz equationisa
superposition of the eigenfunctions, which are determined by the homogenous Helmholtz equation,

Y% 2) = D (A 00Ky X) + By SiN(Kpy X)) X .. X (A, 00S(Kiry 2) + By SiN(K 2)) (11)

The admittances define the boundary conditions,

0Y(x.y,2)

ox x=0 = lex:Ol/l(o’ Y Z)

1) x=L, k5 X:Lx‘/’(LX' y.2) 2
M = ikﬂx:L [//(X, Y, LZ)

0z x=L, ‘

which are made true for each component of the sum separately

knx an =-i kIBX:O Ahx

Koo (= Anc SiN(Ke L) + By cos(Kiy Ly )) =1KB,op, (A €0S(Ki Ly ) + By Sin(Kiy L)) 13)

King (= A SIN(Kiy L) + By SIN(K 1, 2)) =1KB o, (A, 008(Ki L) + By Sin(Kiy L))

These are 6 homogenous equations for six unknowns A, B, ...B,. A non-trivial solution is only found if the
corresponding 6x 6 matrix determinant is zero.

ikBx=0 knx 0 L
- ikﬂx:Lx cos(Kp Ly ) = Kn Sin(k Ly) Ky cOS(K Ly ) = ikﬁx:Lx sin(k,Ly) 0 L (14)
0 0 (O
M i L W

Equation (14) quantizates the values of k,,...,k, i.e. it gives the eigenfrequencies w, of the system
through equation

2
,
( N, mJ :kn mzzan2+...+ka2. (15)
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The determinant (14) reduces to the product of three 2x 2-determinantsi.e. the eigenvalues of the 3 coordinate
directions are independent. The quantization condition for x-directionis

Ikﬂx =0 knx

. . =0, (16)
- Ikth:LX COS(an x) k SIn(knx x) knx COS(an x) Ikﬁx:Lx SIn(knx x)
which leads to the transcendental equation

L g (W) +i(Byer, + Brco) = a7

W x=0 ><:LX kL x=L x=0
where w =KL, .Thus the eigensolution for the solution becomes

Ko . . Kw . .

wn...m(x! Y, Z) = T COS(anX) _IIBX:O SIn(knxx) XX T COS(kaZ) - IIBZ:O Sln(krnz Z) . (18)
3.2. Solving the eigenvalue equation
The eigenvalue equation (17),
(kn” + K B18,) tan(kp L) + ik (B, + B,) = O (19)

cannot be solved analytically. We have used Newton iteration to find the eigenvalues. The algorithm had to be
designed in away that asit finds the solutions they have to remain associated with their proper ordinal number:
the n'th zero has to remain the n'th zero. If k = 0the equation is easy to solve

ztan(z2) =0 = sin(z) =0 = z=nn. (20

We take this as the starting point for the iteration for any frequency. This does not work for the first zero. It is
handled by adding a very small number to the starting value. A relaxation parameter « |, is introduced so that it

grows linearily from O (corresponding to zero frequency) to 1 (corresponding to the target frequency) as the
iteration proceeds.

The modified Newton iteration is defined for f (g,,) =0 as:

qn(O) =nm
: f(@")

k+) — o (K n
Qv =0y —0n— oo (21)

' R R
When the function f of equation (19) isinserted we are lead to the equation:

(q 0 +ﬁ2ﬁ1 " ]an(qn(”)ﬂkL (B, + B,) cos(q, ™)

a,“? =0, - a, cos(a, ) " (22)

n

{1 /3215’1( Hdn(q ) cos(q (k))+[q <k>+ﬂzﬁlk2Lx2]
g " " " q.®
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Without the relaxation parameter a,, the iteration fails to converge to the correct N root. The algorithm was
implemented as a matlab function. Figure 2 shows eigenvalues for frequency range from 20Hz up to 1500Hz.

o
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Figure 2 .Eigenvalues: real (horizontal) and imaginary (vertical) part of . At low frequency the root

has a small negative imaginary part. At first it grows with frequency, until at a point it reaches a
maximum val ue corresponding to maximum damping of the mode. As frequency isincreased further the
imaginary part starts decreasing. At infinite frequency the roots return to the real axis. Thereal part is
increasing all the time, although very little as we get to high frequencies.

3.3. The eigenfunctions and their normalization

The normalization integral,

e = [0 (00, (00 23
0

is

| x = f|: klzx COS(anX) - iﬁx:O S n(knxx):”: klzx COS(anX) - iﬂx:o Sin(anX)j|dX (24)
0

The integral is calculated with exponential representation of trigonometric functions and using the boundary
condition (19). Thefinal formis

N :Z_;{L(knz gkt )-i Bomo * Bre (ks —ﬂxzoﬂmk%}

(25)
K = BRK?
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Figure 3 and 4 show the real and imaginary parts of the eigenfunctions in tow cases. Figure 3 describes a
symmetric case, where the admittances on the opposite walls are the same. Figure 4 shows eigenfunction in a
case of different admittances.
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Figure 3 .The 5" eigenfunction in one direction in case of two absorbing walls with the same admittance.
The upper figure describes the real part of the wave function as a function of position. The lower figure
corresponds to the imaginary part.
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Figure 4 .The 5th eigenfunction in one direction in case of two absorbing walls with different
admittances ($=0.01 and (3=038-0.2i) . The upper figure describes the real part of the wave function as a
function of position. The lower figure corresponds to the imaginary part.

4. COMPARISON WITH BEM

For BEM model we had a boundary element mesh with 4906 elements. The average element size was 0.05m.
In middie of the box we had a point source, the strength of which was 0.005Pa. The boundaries were defined
by specific impedance, which was chosen to get real value of { =2.6 at three walls (floor, ceiling and back

wall); the other walls were assumed to berigid.
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Figure 7 shows the calculated and simulated pressure as a function of frequency at point 1 (see figure 5) near
the corner of the box in case of rigid walls in z-direction, soft walls in y-direction with admittance equal to
0.38, and both rigid and soft wallsin x-direction.
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Figure7: SPL (dB) at point 1 (see figure 5) as a function of frequency. The blue circles correspond to
BEM simulation and the red curve corresponds to analytical calculationsin a case of a box of three
rigid walls and three absorbing walls.

5. CONCLUSIONS

Traditionally the difficulty to solve eigenvalue equation has hindered the use of general impedance boundary
condition in a rectangular box. We have developed a version of Newton iteration method that enables us, in
addition to identify the root of caracteristic equation, to specify the ordinal number of the acquired root.

We calculated the frequency response of a point source in a box using two numerical solution algorithms in
order to be able to compare and verify the tools and to study the effects of boundary conditions.
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