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1 INTRODUCTION

The modeling of the acoustic wave fields often provides additional information for
acoustical measurements. In the case of long wavelengths, wave problems can be mod-
eled using full-wave type methods which include the finite element, finite difference and
boundary element methods. Unfortunately, when the wavelength decreases, these tradi-
tional full-wave modeling techniques become increasinglyexpensive since a sufficient
number of discretization points per wavelength (10 points per wavelength is considered
as the rule of thumb) is required to obtain a reliable solution. In addition, the numerical
pollution due to the accumulation of phase error forces the use of even more grid points
per wavelength to keep the relative error of the solutions sufficiently low.

A promising candidate for solving the wave propagation problems with a reduced com-
putational cost is the Ultra Weak Variational Formulation (UWVF) [1]. This approach
uses same computation meshes as the standard finite element method. However, the
idea of the UWVF approach is that the sound field can be approximated locally using
plane wave basis functions. In most cases, the use of the plane wave basis significantly
reduces the CPU-time and the need of memory compared to conventional techniques
(such as the finite element method).

In this study, the UWVF method is used for approximating the time harmonic wave
propagation in three spatial dimensions (3D). We consider geometry which contains a
real loudspeaker in free space. Results are computed using the MPI parallelized FOR-
TRAN90 UWVF solver code. The used PC-cluster contains 24 Pentium 4 with 48 GB
total RAM. The main goal of this work is to study the directivity of the used loudspeaker.

2 THE HELMHOLTZ EQUATION

In this study, the full-wave solution means the numerical solution of the acoustical wave
equation in the frequency domain (the Helmholtz equation).In this section, the UWVF
for the inhomogeneous Helmholtz problem is outlined shortly. The truncation of an
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unbounded problem is done using the perfectly matched layer(PML) [2], which is the
numerical damping layer surrounding the computational domain. A more thorough
presentation of the coupled UWVF-PML method can be found in [3].

Next, we formulate the acoustic wave problem. Let us assume thatΩ is a 3D domain
having the boundaryΓ and that the acoustical pressure fieldP can be written in follow-
ing form

P (r, t) = p(r)e−iωt, (1)

wherer = (x, y, z) is the spatial variable,t is the time,p denotes the pressure field (no
time dependence) andω is the angular frequency(ω = 2πf). Under these assumptions
the Helmholtz equation with boundary condition(s) can be written as
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whereκ = ω/c + iα is the wave number,ρ is the density andgΩ stands for a volume
wave source. On the boundary the parametersQ ∈ C with |Q| ≤ 1 andσ are real
and positive. Finally, the complex valued source function on the exterior boundaryΓ is
denoted byg.

For the UWVF, the domainΩ is partitioned into a collection of finite elements (tetrahe-
dron is a natural choice in 3D). After the mesh partitioning,the weak formulation can be
applied individually for each element. Furthermore, the communication between adja-
cent elements is handled using the numerical flux. The final weak form for the problem
is obtained by summing over all of the elements. More detailed derivation of the weak
form can be found in [4].

3 NUMERICAL EXPERIMENTS

In our numerical experiments, we study the wave propagationin homogeneous medium.
In particular, our focus in the following simulations is to study directivity of the loud-
speaker by computing the pressure distribution in the far-field. In all of the simulations
the wave propagation is studied in air. More precisely the speed of soundc and the den-
sity ρ are340 m/s and1.2 kg/m3, respectively. Attenuation is ignored in all of the cases.
In this study two frequencies for wave source are used. For low frequency simulations
we use 1000 Hz and for high frequency 5000 Hz.

Before calculations we need to generate the problem geometry. The problem geome-
try consists of the loudspeaker and the surrounding free space. First, we generate the
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loudspeaker geometry from its CAD geometry file using the Gambit software. Then,
the Comsol Multiphysics software was used to make the free space geometry (box with
PML region). After that, we unite the loudspeaker geometry in the box. For the UWVF
simulation, the geometry of the problem needs to be partitioned into elements i.e. com-
putational mesh. For that purpose the Comsol Multiphysics software was used.

Figure 1 shows the problem geometry. In Figure 1 the volume between the inner and the
outer cube is the PML region. The PML thickness for the discant simulations is 7.5 cm
and 69 cm for the bass simulations. The whole computation domain for low frequencies
is Ω = [−1.725, 1.725]3 m andΩ = [−0.8, 0.8]3 m for high frequencies.

Figure 1:Problem geometry for high frequencies (Left) and low frequencies (Right).

The source is introduced to the model by using an inhomogeneous Neumann boundary
condition on the discant or the bass surface depending on thefrequency. Other parts of
the loudspeaker are handled using the sound-hard boundary condition, except the end of
the reflex tube, which contains the absorbing boundary condition. Finally, the remaining
surfaces of the geometry contain the absorbing boundary condition.

Before going any further, stability indicator for the solutions must be introduced. In this
study we only want to check the grid density. The indicator (rule of thumb) of the grid
density presents, in practice, how many approximation points there are per wavelength.
This can be presented as

N =
λ

hmax

, (4)

whereλ is the wavelength,hmax is the longest distance between two nodes of the adja-
cent element in the computation mesh andN is the number of points per wavelength.
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The computation meshes are shown in Figure 2. In Figure 2 the cross-section of the
whole meshes and also the surface meshes of the loudspeaker are shown. Note that
the source surface is shown in different color in the surfacemeshes. Computation
meshes consists of 761281 (hmax = 0.0714) elements for high frequency simulations
and 735644 (hmax = 0.0963) elements for low frequency simulations. For bass ele-
ment simulations frequency of 1000 Hz is used, from which we obtain the grid density
N ≈ 3.53 (4). Similarly for high frequency simulations we use the frequency of 5000
Hz from which we getN ≈ 0.95.
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Figure 2:Meshes used in the computations. Left column: For 5000 Hz. Right column:
For 1000 Hz. Top row: Whole element partitions. Bottom row: Thesurface meshes of
the loudspeaker.

The farfield directivity patterns at frequencies 1000 and 5000 Hz are shown in Figure 3.
As can be seen from Figures 3(a) and 3(c), both frequencies produces symmetric shapes
in planexz. In planeyz it is interesting to notice how the non-active speaker effects on
the shape of the farfield. The interference behind the loudspeaker (xz andyz planes)
can also be seen from the farfield directivity patterns.

Finally, Figure 4 shows the pressure fields. In these snapshots the surface of the loud-
speaker is also included. Figure 4 shows the dB level and real-part of the solutions at a
single frequency.

4



FULL -WAVE MODEL FOR A LOUDSPEAKER Lähivaara, Huttunen, Simonaho

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

xz plane

(a)

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

yz plane

(b)

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

xz plane

(c)

  0.5

  1

30

210

60

240

90

270

120

300

150

330

180 0

yz plane

(d)

Figure 3:Top row: Farfields at 5000 Hz. Bottom row: Farfields at 1000 Hz. The title
shows the studied plane.

4 CONCLUSIONS

In this work the Helmholtz equation is solved in 3D using the UWVF method. The
main goal of the work was to study directivity of the loudspeaker. The geometry of the
problem contained the real geometry of the loudspeaker which was located into a free
space. Solutions were computed in low (1000 Hz) and high (5000 Hz) frequencies using
the parallelized UWVF solver.

While the results show that simulation of the loudspeaker is possible, a detailed com-
parison with measurements still needs to be made to validatethe simulation accuracy.
On the other hand, the used model can be further improved. Forexample, one must note
that our model does not approximate the reflex tubes correctly. This is handled only
by using the absorbing boundary condition at the end of the tube. The model for loud-
speaker surface would also be better by using the real surface impedance of the used
material.
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Figure 4:Pressure fields. Top: For the discant element simulation at 5000 Hz. Bottom:
For the bass element simulation at 1000 Hz.

REFERENCES

[1] DESPRÉSB, ur une formulation variationnelle de type ultra-faible,Comptes Rendus
de l’Academie des Sciences - Series I, (1994).

[2] BÉRENGER J, A perfectly matched layer for the absorption of electromagnetic
waves,Journal of Computational Physics, (1994).

[3] HUTTUNEN T, KAIPIO J P, & MONK P, The perfectly matched layer for the ultra
weak variational formulation of the 3D Helmholtz problem,International Journal
for Numerical Methods in Engineering, accepted, (2004).

[4] HUTTUNEN T, The Ultra Weak Variational Formulation for Ultrasound Transmis-
sion Problems, Ph.D. thesis, University of Kuopio, 2004.

6


	Introduction
	The Helmholtz equation
	Numerical experiments
	Conclusions

