# MODELLING ROOM ACOUSTICS

U. Peter Svensson

NTNU - Norwegian University of Science and Technology, Trondheim, Norway



## COMPUTER MODELLING IN ROOM ACOUSTICS

- Principles
- Techniques: wave equation solving or sound field decomposition (e.g., geometrical acoustics)
- Short history
- What is the state of the art?
- How accurate is computer modeling?

















|                           | Room acoustics,<br>factories,<br>loudsp. systems | Noise control<br>(small<br>rooms) |
|---------------------------|--------------------------------------------------|-----------------------------------|
| ISM + Ray/cone<br>tracing | $\checkmark$                                     |                                   |
| FEM                       |                                                  | $\checkmark$                      |
| BEM                       |                                                  | $\checkmark$                      |
| Sofar, mainly<br>Beam tr  | in research:<br>acing, Radiosity                 | v, ISM + Edge                     |

# METHODS, 2

| FEM, BEM, FDTD            | Comp. load grows very fast with<br>frequency (f <sup>3</sup> / f <sup>4</sup> ).<br>All details must be modeled! |
|---------------------------|------------------------------------------------------------------------------------------------------------------|
| FEM, FDTD                 | Source directivity tricky.                                                                                       |
| ISM + Ray/cone<br>tracing | Does not (yet) handle diffraction                                                                                |
| Beam tracing              | Does not (yet) handle scattering.                                                                                |
| Radiosity                 | Does not (yet) handle diffraction.                                                                               |
| Do not handle sph         | erical reflection from                                                                                           |

absorbers (or seat-dip effect)

### STATE-OF-THE-ART FDTD, 1



(From Sakamoto et al, ICA 2004)

At ICA 2004, Sakamoto (Tokyo University) demonstrated an FDTD calculation of a small concert hall ( $\sim$  5000 m3) up to 1.4 kHz. The model had >100 million elements, ran on 8 PCs with 11 GB for 34 hours.

| ST                    | ATE-C          | DF-THE<br>2 kHz | -ART F | <b>DTD,2</b> |
|-----------------------|----------------|-----------------|--------|--------------|
| 5000 m³               | 10 GB<br>1 day |                 |        |              |
| 40000 m³              |                |                 |        |              |
| 160000 m <sup>3</sup> |                |                 |        |              |
|                       |                |                 |        |              |

| ST        | ATE-C           | DF-THE<br>2 kHz  | -ART F | <b>DT D, 2</b><br>8 kHz |
|-----------|-----------------|------------------|--------|-------------------------|
| 5000 m³   | 10 GB<br>1 day  | 80 GB<br>16 days |        |                         |
| 40000 m³  | 80 GB<br>2 days |                  |        |                         |
| 160000 m³ |                 |                  |        |                         |
|           |                 |                  |        |                         |

| ST        | ATE-C            | DF-THE            | -ART F             | DTD,2 |
|-----------|------------------|-------------------|--------------------|-------|
| 5000 m³   | 10 GB<br>1 day   | 80 GB<br>16 days  | 640 GB<br>256 days |       |
| 40000 m³  | 80 GB<br>2 days  | 640 GB<br>32 days |                    |       |
| 160000 m³ | 640 GB<br>4 days |                   |                    |       |

| ST        | ATE-C            | DF-THE<br>2 kHz   | ART F              | <b>DT D, 2</b><br>8 kHz |
|-----------|------------------|-------------------|--------------------|-------------------------|
| 5000 m³   | 10 GB<br>1 day   | 80 GB<br>16 days  | 640 GB<br>256 days | 4.8 TB<br>11 yrs        |
| 40000 m³  | 80 GB<br>2 days  | 640 GB<br>32 days | 4.8 TB<br>512 days |                         |
| 160000 m³ | 640 GB<br>4 days | 4.8 TB<br>64 days |                    | 300 TB<br>44 yrs        |
|           |                  |                   |                    |                         |

|                      | <u>1 kHz</u>     | <u>2 kHz</u>      | <u>4 kHz</u>       | - <b>D   D, Z</b><br>- <u>8 kHz</u> |
|----------------------|------------------|-------------------|--------------------|-------------------------------------|
| 5000 m³              | 10 GB<br>1 day   | 80 GB<br>16 days  | 640 GB<br>256 days | 4.8 TB<br>11 yrs                    |
| 0000 m <sup>3</sup>  | 80 GB<br>2 days  | 640 GB<br>32 days | 4.8 TB<br>512 days |                                     |
| 60000 m <sup>3</sup> | 640 GB<br>4 days | 4.8 TB<br>64 days |                    | 300 TB<br>44 yrs                    |

are maybe 100 times faster, so 0.4 years instead of 44 years!

### STATE-OF-THE-ART BEAM TRACING



(From Funkhouser et al, JASA 2004)

Beam tracing implements eighth order specular reflection in a 10 000 plane model: 190 seconds preprocessing + 49 seconds, using 19 MB of memory on a PC.

Note! Only specular reflections - no scattering, no edge diffraction (but edge diffraction has been demonstrated).



## THE INPUT DATA PROBLEM

Absorption Scattering Scattering Source directivity

Now: 125 Hz - 4 kHz ISO scattering coefficient is coming Scattering function

We need shared and standardized data sets!

Advanced methods can never give better output data than the quality of the input data!!

## ROUND ROBIN I, VORLÄNDER 1995

Auditorium at PTB Only 1kHz band 14 different softwares

#### Findings:

- Specular + diffuse reflections needed for rev. tail
- 3 softwares were judged very reliable within 1-2 JND for most parameters
- Importance of right input data

## **ROUND ROBIN II, BORK 2000**



Concert hall, Elmia 125 Hz - 4 kHz bands 16 participants

#### Findings:

- Most parameters and softwares had similar accuracy
- Problems in 125 Hz band diffraction or seat-dip effect not modeled by any software

## **ROUND ROBIN III, BORK 2002**



(From Bork 2002) Studio at PTB 125 Hz - 4 kHz bands

#### Findings:

- Uncertainties in measurement of lateral parameter - microphone problems
- Large deviations between measurements and simulations for 125 Hz.





## REFERENCES

A. Krokstad, S. Strøm, S. Sørsdal, "Calculating the acoustical room response by the use of a ray tracing technique," J. Sound Vib. 8, pp. 118-125 (1968).

H. Kuttruff, "Simulierte nachhallkurven in rechteckräumen mit diffusem Schallfeld," Acustica 25, pp. 333-342 (1971).

H. Juricic, F. Santon, "Images et rayons sonores dans le calcul numérique des échogrammes," Acustica 28, pp. 77-89 (1973).

J. P. Walsh, "The Design of Godot: A System for Computer-Aided Room Acoustics Modeling and Simulation," Proc. of ICA, (1980).

J. L. Dohner, R. Shoureshi, R. J. Bernhard, "Transient analysis of three-dimensional wave propagation using the boundary element method," Int. J. for Num. Methods in Eng. 24, pp. 621-634 (1987).

D. Botteldooren, "Acoustical finite-difference time-domain simulation in a quasi-cartesian grid," J. Acoust. Soc. Am. 95, pp. 2313-2319 (1994).

L. Savioja, T. Rinne, T. Takala, "Simulation of room acoustics with a 3-D finite difference mesh," in *Proc. Int. Computer Music Conf.*, (Aarhus, Denmark), pp. 463-466, (1994).

D. van Maercke, "Simulation of sound fields in time and frequency domain using a geometrical model," Proc. 12th Int. Cong. Acoust., Toronto, E11-7 (1986).

## REFERENCES

M. R. Schroeder, "Digital simulation of sound transmission in reverberant spaces," J. Acoust. Soc. Am. 47, pp. 424-

M. Vorländer, "International round robin on room acoustical computer simulations," Proc. of the 15th ICA, Trondheim , pp. 689-692 (1995).

I. Bork, "A comparison of room simulation software – The 2nd Round Robin on room acoustical computer simulation," Acustica/Acta Acustica 86, pp. 943-956 (2000).

I. Bork, "Simulation and measurement of auditorium acoustics - The round robins on room acoutical simulation," Proc. of the IOA 24, Pt4. (2002).

S. Sakamoto, T. Yokota, H. Tachibana, "Numerical sound field analysis in halls using the finite difference time domain method," Proc. of RADS 2004, Awaji, Japan, (2004).

T. Funkhouser, N. Tsingos, I. Carlborn, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, A. Ngan, "A beam tracing method for interactive architectural acoustics," JASA 115, pp. 739-756 (2004).